

■QE

Quantum Efficiency Seminar und Colloquium

CHARUSHEELA RAMANAN

VU University Amsterdam

The Effect of Molecular Interfaces on Photophysical Processes in Blended Films for Organic Photovoltaic

The photoactive layers in organic photovoltaic (OPV) devices comprise of solid-state combinations of electron-donor (D) and electron-acceptor (A) molecules with relative molecular orbital energies suitable for exciton creation, subsequent exciton dissociation at the D-A interface, followed by diffusion-controlled charge collection at the OPV electrodes.[1] Recent work has highlighted the importance of electronic and molecular interactions at the D-A interface in driving these processes.[2] Optimal structure of the molecular interface can enhance desirable behavior such as charge separation, and suppress loss mechanisms such as geminate pair recombination. We consider this problem in a study of blended films of 6,13-bis-(triisopropylsilylethynyl) pentacene (TIPS-Pn) with N,N-bis (2,6-diisopropylphenyl) perylene-3,4:9,10-bis- (dicarboximide) (PDI) derivatives.[3] Ultrafast transient absorption spectroscopy demonstrates competitive photophysical processes in these films, which are further correlated with the trend in molecular interactions suggested by film morphology characterization.

1] Forrest, S.R. MRS Bull. 2005, 30, 28-32.; Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185.

[2] Linares, M., Beljonne, D., Cornil, J., Lancaster, K., Bredas, J.-L., Verlaak, S., Mityashin, A., Heremans, P., Fuchs, A., Lennartz, C., Ide, J., Mereau, R., Aurel, P., Ducasse, L., Castet, F. J. *J. Phys. Chem. C* **2010**, 114, 3215–3224.; Zhu, X. Y.; Kahn, A. *MRS Bull.* **2010**, 35, 443–448.

[3] Ramanan, C., Smeigh, A.L., Anthony, J.E., Marks, T.J., Wasielewski, M.R. *J. Am. Chem. Soc.* **2012**, 124, 386-397.

Date:Tuesday, November 6th, 2012 2:15 pmLocation:Lecture Hall 1, Hermann-Herder-Str. 3, Freiburg